Pages

Thursday, December 18, 2014

STUDY: Climate change could slash coffee production

A bitter cup: climate change profile of global production of Arabica and Robusta coffee

Christian Bunn*

Source: Climatic Change - An Interdisciplinary, International Journal Devoted to the Description, Causes and Implications of Climatic Change


Published online:  December 13, 2014

Abstract

Coffee has proven to be highly sensitive to climate change. Because coffee plantations have a lifespan of about thirty years, the likely effects of future climates are already a concern. Forward-looking research on adaptation is therefore in high demand across the entire supply chain. In this paper we seek to project current and future climate suitability for coffee production (Coffea arabica and Coffea canephora) on a global scale. We used machine learning algorithms to derive functions of climatic suitability from a database of geo-referenced production locations. Use of several parameter combinations enhances the robustness of our analysis. The resulting multi-model ensemble suggests that higher temperatures may reduce yields of C. arabica, while C. canephora could suffer from increasing variability of intra-seasonal temperatures. Climate change will reduce the global area suitable for coffee by about 50 % across emission scenarios. Impacts are highest at low latitudes and low altitudes. Impacts at higher altitudes and higher latitudes are still negative but less pronounced. The world’s dominant production regions in Brazil and Vietnam may experience substantial reductions in area available for coffee. Some regions in East Africa and Asia may become more suitable, but these are partially in forested areas, which could pose a challenge to mitigation efforts.

Discussion

The goal of this study was to examine the implications of climate change for global coffee production. Analysis of changes in suitability under the RCP 6.0 scenario shows that climate change may reduce production of Arabica coffee in many areas, especially in Brazil. Robusta may also be less suitable in important regions in Brazil and Vietnam. Gains elsewhere will do little to offset these losses, giving global losses in suitability for both species of about 50 %. Only East Africa and the Asian island states show substantial gains in suitability for both species.

We developed a methodology that is based on the notion that an ensemble of models captures more relevant information than a single model can. By using a mean of models based on several feasible parameter combinations rather than a single model our analysis is more robust than previous regional studies. The extrapolation of the models with spatially-explicit climate information gave global maps of bothC. arabica and C. canephora that indicate suitability scores in regions of major production. We applied the underlying models to the outputs of five global climate models for the RCP 2.6, RCP 6.0 and RCP 8.5 emission scenarios. We averaged across emissions scenarios to produce maps and analyzed the change in suitability scores.

Both species show important changes in accumulated suitability scores at lower latitudes, which become less negative, albeit not positive, at higher latitudes. A southward latitudinal migration was also proposed by Zullo et al. (2011) in a regional study in Brazil. However, we did not find such impacts of climate change in other regions. Moreover, the gains in suitability in southern Brazil may not be enough to compensate for losses in suitability over large areas elsewhere. Similarly, losses in suitability are mostly at low altitudes while higher altitudes gain in suitability. Schroth et al. (2009) and Simonett (1988) identified similar altitudinal migration for Arabica in Central America and for Robusta in Uganda, respectively. These local studies confirm our analysis, which shows that altitudinal migration of coffee production will likely be a global trend. The magnitude of this effect, however, depends on how climate change will impact local conditions.

It has previously been hypothesized that Robusta production may be able to replace in part the losses in Arabica production due to climate change. The hypothesis rests on the notion that C. arabica is heat sensitive and would thus suffer in a hotter world. In contrast, C. canephora can tolerate higher temperatures and could thus replace heat-stressed Arabica coffee. This scenario may be viable in some regions, but our analysis emphasizes that C. canephora needs climates with little intra-seasonal variability. This limits the Robusta crop to low latitudes. Also, as climate may not only become hotter, but also more variable, this may aggravate negative effects on Robusta coffee production. Thus, globally both species appear to be equally affected by climate change. It is noteworthy that the Congo basin, the center of origin of C. canephora, may become unsuitable for the species by 2050 in the high emissions scenario. This warrants further investigation as many see indigenous varieties as the key to adapt coffee to climate change.

We found that Arabica production in Eastern Africa is less impacted than in other regions. In contrast, Davis et al. (2012) proposed substantial reduction in the area suitable for indigenous Arabica varieties in Eastern Africa. Our data are based on the distribution of commercial plantations, which have adapted to a broader range of climates than those of Arabica’s native range. This difference suggests that in areas where coffee production remains feasible production systems will have to be adapted. The necessary fundamental changes in local production systems would pose substantial challenges to smallholder farmers.

Moreover, given the long lifespan of coffee plantations the feasibility of migrating coffee to land that will be more suitable under climate change needs further study. The areas of East Africa that will become more suitable for coffee are currently not forested, in contrast to the Asian areas that will gain suitability, which currently are under forest. Climate-induced migration may thus result in further emissions from land-use change. Whether or not newly-suitable areas will be threatened by conversion to agriculture depends on economic incentives. Our analysis shows that highly productive areas of coffee in Brazil and Vietnam may become unsuitable for coffee in the future. World markets may thus create economic opportunities in East Africa, but may induce additional deforestation in Asia, where coffee is already a frontier crop. Policy-makers need to be aware that these are challenges that they will need to confront.
------
*The Author(s):  Christian Bunn1, 2  , Peter Läderach3, Oriana Ovalle Rivera2 and Dieter Kirschke1

Funding: This research was conducted under the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Christian Bunn received a “Klimafolgenforschung” fellowship through the Stiftung Humboldt Universität.  

Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.






No comments:

Post a Comment

Join the conversation